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Coherent X-ray diffraction microscopy is a method of imaging non-periodic

isolated objects at resolutions only limited, in principle, by the wavelength and

largest scattering angles recorded. We demonstrate X-ray diffraction imaging

with high resolution in all three dimensions, as determined by a quantitative

analysis of the reconstructed volume images. These images are retrieved

from the 3D diffraction data using no a priori knowledge about the shape or

composition of the object, which has never before been demonstrated on a

non-periodic object. We also construct 2D images of thick objects with greatly

increased depth of focus (without loss of transverse spatial resolution). These

methods can be used to image biological and materials science samples at high

resolution using X-ray undulator radiation, and establishes the techniques to

be used in atomic-resolution ultrafast imaging at X-ray free-electron laser

sources. c© 2005 Optical Society of America

OCIS codes: 340.7460, 110.1650, 110.6880, 100.5070, 100.6890, 070.2590, 180.6900

1. Introduction

In many fields of science the ability to visualize the three-dimensional organization of com-

ponent parts is proving crucial to our understanding of the mechanisms involved in atomic

and molecular processes. This is occurring in fields as diverse as whole-cell imaging in biol-

ogy, the study of the minimum energy pathway for crack-propagation in brittle solids, and

the internal structure of the new labyrinthine mesoporous structures developed by inorganic

chemists for a wide range of applications.

The field of coherent X-ray diffraction imaging (CXDI, also known as diffraction mi-
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croscopy) is expected to make a significant contribution to this effort. In this method, first

put forward and developed by David Sayre,1,2 an image is reconstructed from measurements

of the far-field scattered intensity of an isolated and non-periodic object. The resolution of

this form of microscopy is limited only by the wavelength and the largest scattering an-

gle recorded. Hence this method is being pursued as a method for high-resolution X-ray

microscopy without the technological limitations of manufacturing high-resolution optical

elements3–8 The penetrating nature of X-rays allows imaging of objects much thicker than

can be examined in a TEM (e.g. 10µm), at resolutions much better than visible micro-

scopes. Preliminary studies of radiation damage suggest that 3D resolutions of about 10 nm

should be achievable on frozen hydrated biological material.9 The method is also being pur-

sued in order to push X-ray imaging to its resolution limits, namely ultrafast near-atomic-

resolution imaging of macromolecules at X-ray free-electron laser (XFEL) sources10,11 and

of laser-aligned molecules,12 that will enable structure determination without the need for

crystallizing material.

High resolution imaging of thick objects can only be attained in the context of three-

dimensional (3D) measurement and reconstruction. In most cases, other than surface studies

or imaging of man-made objects, the analysis of the structure can only be properly inter-

preted in three dimensions. Unless the object itself is a slice of material that is thinner than

the depth of focus of a two-dimensional (2D) image, artifact-free structural analysis can only

be carried out with knowledge of the surrounding material, or by applying imaging modal-

ities whereby depth information is not strongly transferred to the image (such as confocal

imaging). At resolution lengths very much larger than the wavelength, thickness effects do

not play a significant role since, at the correspondingly low numerical aperture, the depth
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of focus may be much larger than the size of the object. This is certainly the case as one

satisfies the projection approximation of high energy X-ray tomography, where the depth

of focus approaches infinity. Tomographic imaging in this mode is limited by detector pixel

size, or, if a diverging beam is used, by Fresnel diffraction effects. However, as one moves

to higher resolution, the depth of focus decreases dramatically, with the ratio of transverse

resolution length to longitudinal depth of focus given by the numerical aperture. For the

classes of high-resolution microscopy and structure determination applications in which we

are interested that imaging can only properly be carried out in 3D.

Coherent 3D X-ray diffraction imaging is especially suited to high-resolution X-ray mi-

croscopy. With a collimated beam incident on an object, the far-field diffraction pattern

(recorded on a flat CCD) represents diffracted intensities which, in reciprocal space, sam-

ple points on the momentum- and energy-conserving Ewald sphere. By rotating the sample

about an axis normal to the beam, this sphere, which passes through the origin, sweeps

through almost all of the reciprocal space volume of continuous diffuse scattering from our

non-periodic object. In this way we collect the three-dimensional distribution of scattered

intensity in reciprocal space, which is phased using the 3D implementations of iterative

methods, as discussed below. Once the phases of the diffraction intensities in the diffraction

volume have been determined, the 3D Fourier transform of the object is known and the 3D

image can be obtained simply by an inverse Fourier transform. As will be demonstrated in

this paper, such datasets can be used for artifact-free analysis of structures. This is also

the case for crystallography, but is not generally the case for imaging with a lens. Partially-

coherent tomographic imaging techniques, such as tomography in the scanning transmission

X-ray microscope (STXM)13 or transmission X-ray microscope (TXM),14,15 lead to a com-
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plicated transfer of object spatial frequencies into the measured image and there is no longer

a simple one-to-one mapping of a measurement on a detector pixel, for example, to a spatial

frequency of the object. For some classes of object, such as pure phase or amplitude objects,

it may be possible to deconvolve the 3D transfer function, but this is not generally assured.16

As with coherent diffraction imaging and crystallography, coherent imaging with a lens also

leads to a direct mapping of spatial frequencies in the object to spatial frequencies of the

image. Again, a tomographic reconstruction from coherent 2D images can be easily achieved

for pure amplitude or phase objects, but would otherwise require knowing the phase and

amplitude of the image in order to transform into 3D reciprocal space. Coherent diffraction

imaging essentially attempts to emulate coherent lens-based imaging, using a computer al-

gorithm in place of a lens. The advantage, for tomography of complex objects, is that the

diffraction amplitudes are measured and the phases retrieved from the oversampling of those

amplitudes, so that a direct 3D Fourier synthesis of the object can be achieved.

In this paper we perform an important demonstration of the feasibility of high-resolution

diffraction microscopy required for biological and materials characterization, as well as single-

molecule imaging. Significantly this is done without the use of detailed a priori information

about the sample structure or low-resolution data obtained by other means. We also demon-

strate that a full 3D reconstruction can be produced on a 10243 or larger data cube in a

reasonable amount of time using currently available computational hardware. Three signif-

icant recent developments have enabled us to perform full 3D image reconstructions with

high resolution in all three dimensions. The commissioning of a new diffraction tomogra-

phy apparatus17 by Stony Brook University at an undulator beamline18 of the Advanced

Light Source (ALS) allows us to acquire diffraction patterns at over one hundred orienta-
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tions of an object, with short exposure times, over angular ranges of more than ±70◦. The

Shrinkwrap phase-retrieval algorithm that we developed6 has proven to be extremely robust

and effective in performing phase retrieval on diffraction datasets with missing data (e.g.

due to a beam-stop) or limited angles. The algorithm retrieves images from the measured

diffraction intensities. It does not require additional information about the object, such as

a low-resolution image, and can retrieve phases of general complex-valued objects. In direct

methods of crystallography the term ab initio is used for the meaning “from the experi-

mental data, without any supplemental prior information”,19 and we employ this term to

describe our method. The third advance is the ability to perform 3D fast Fourier transforms

(FFTs) on the large 10243-element arrays of diffraction data that are assembled from our

measurements. Although the familiar increase of computer processing power has brought

giga-element FFTs in reach of today’s computers, it has been the development of computer

clusters and specific software for distributed computation of FFTs that has made feasible

the 3D implementation of the Shrinkwrap algorithm. In particular, we utilize the dist fft

software20 on a 16-node cluster of dual-processor Apple G5 Xserves, giving us a performance

of 8.6 s per 10243-element single-precision complex FFT. We note that this computational

advance should also benefit the field of diffraction tomography [21, Sec. 13.2], in which both

the phase and amplitude of the scattered field are measured as is possible with scattered

ultrasonic waves.

We present here experimental results of high-resolution 3D X-ray diffraction imaging of

a well-characterized test object to demonstrate the practical application of these advances

and quantitatively assess the technique. We show the first full 3D X-ray diffraction images

that have been reconstructed without prior knowledge of the sample. We believe that these
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are the highest resolution 3D X-ray images of non-crystalline objects ever achieved, with a

demonstrable resolution volume of 10 nm×10 nm×40 nm. We demonstrate that artifact-free

2D images can be created from the 3D diffraction dataset of objects very much thicker than

the depth of focus. In Sec. 2 we review diffraction imaging, the experimental requirements

for 3D image reconstructions, and our computer implementation to perform the 3D phase

retrieval and Fourier synthesis of the image. Our sample preparation and characterization

techniques are discussed in Sec. 3.A, and our particular experimental setup and methods are

described in Secs. 3.B and 3.C. Image reconstruction results are presented in Sec. 4. The

3D images are visualized as iso-surface renderings, extremely large depth-of-focus projection

images, maximum value projections, and tomographic slices through the object. We also

compare artifact-free 2D projections of 3D data to reconstructions of individual 2D views,

and illustrate the artifacts present in single-view 2D images of thick objects. In Sec.5 we

quantitatively assess our 3D image resolution.

2. Three-Dimensional Coherent Diffraction Imaging

The incident X-ray wavefield interacts with a three-dimensional (3D) periodic or non-period

object through the scattering potential of the object, o(x) = reρ(x), where ρ(x) is the

complex electron density and re the classical electron radius. This object scattering function

may be decomposed into a Fourier representation of 3D spatial frequencies u, with complex

amplitudes

O(u) = F{o(x)} ≡
∫

o(x) exp(2π iu · x) dx, (1)

in which spatial frequency can be thought of as a volume grating. In the case of coherent

diffraction imaging a plane wave with wave-vector kin is incident on the object and the
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intensity of the scattered field in the direction of the wave-vector kout is measured on a 2D

pixellated detector (e.g. a bare CCD) in the diffraction far field. This detector is typically

centered on the forward direction, but in principle could be oriented in any angle to the

incident beam (see Fig. 1). For elastic scattering only the volume gratings that satisfy Bragg’s

law will scatter, and the wave-vector transfer q = kout − kin will be equal to the grating

spatial frequency; q = u. Since the magnitudes |kout| and |kin| are constant and equal to

1/λ, these spatial frequencies u lie on the Ewald sphere of radius 1/λ,22,23 where λ is the

X-ray wavelength. This construction is equivalent to the condition that to scatter light by

an angle 2θ from the forward direction (the z axis), the volume grating must be tilted by

an angle θ from perpendicular to the forward direction (Bragg’s law). With the convention

used here we have |q| = q = (2/λ) sin θ. The diffraction amplitudes in the direction kout are

proportional to O(q), and in diffraction imaging we measure the intensities, proportional to

|O(q)|2. In particular, in the Born approximation (which can be thought of in this context

as single scattering), the number of photons per second measured in a CCD pixel, with solid

angle Ω, is given by

I(q; Ω) = I0 ΩP |O(q)|2, (2)

where I0 is the flux (photons per second per unit area) of the incident plane wave on the

sample, and P is the polarization factor; P = (1 + cos2 ψ)/2 for unpolarized light, with

ψ = 2θ.22

The complex scattering potential o(x) that we aim to recover from measurements of I(q)

is related to the complex refractive index n(x) of the object by [21, Sec. 13.1]24

o(x) = reρ(x) =
π

λ2

(

1− n2(x)
)

. (3)
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In the soft X-ray region, the complex refractive index is usually written in terms of the

optical constants as n(x) = 1 − δ(x) − iβ(x). For optical constants much less than unity,

which is generally the case for soft X-rays, Eqn. (3) can then be well approximated by

o(x) ≈ 2π

λ2
(δ(x) + iβ(x)) =

2π

λ2
∆n(x). (4)

The limit of validity of Eqn. (2) under the Born approximation requires that D|∆n(x)| <

2π λC, where D is the thickness of the object and C ≈ 0.2.25

2.A. Experimental Requirements

The recovery of the 3D image o(x) from O(u) requires the phases of O(u) to be recovered

and combined with the square root of the measured intensities. Both phase retrieval and

image recovery place requirements on the 3D sampling of the diffraction intensities. Image

recovery requires that the object be adequately sampled in real space to resolve the finest

desired feature size over a given field of view. The requirements of the phase retrieval step

are more demanding, in particular because our phase retrieval algorithm has the additional

task of overcoming gaps and missing regions in the 3D sampled data, by performing the

interpolation tasks of recovering intensities that were blocked by a beam-stop or that were

missed due to a limited angular range of measurements. The 3D image recovery requires

reconstructing the complex amplitudes O(u) throughout a volume of reciprocal space. Since

a single diffraction pattern is limited to frequencies u = q on the Ewald sphere, diffraction

data must be collected for various orientations of the sample.

In this work we perform phase retrieval and image recovery by full 3D Fourier synthesis,

which requires interpolating the measured intensities from the Ewald sphere onto a uniform

3D Cartesian grid. In reciprocal space the grid has a width of N samples, spaced by ∆u,
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and is centered at the zero spatial frequency. For N even, the spatial frequencies along each

grid axis run from −(N/2 − 1)∆u to (N/2)∆u. In real space we characterize the grid by

a spacing ∆x and a field width w = N∆x. Since ∆x∆u = 1/N we have the relationship

∆u = 1/w, thus the largest spatial frequency component along a grid axis is given by

ux,max = N ∆u/2 = 1/(2∆x).

From Eqns. (1) and (2), the inverse Fourier transform of the intensity diffraction pattern

is proportional to the autocorrelation function of the image that would be recovered when

the phases are known:

i(x) = F−1{I(q)} ∝ o(x)⊗ o∗(−x), (5)

where ⊗ denotes the convolution operator. Consider an object of finite extent with a maxi-

mum width D along any one axis of the real-space grid. The autocorrelation image i(x) in

that direction has a maximum width of 2D, and hence the diffraction intensities are band-

limited. That is, the smallest grid spacing required to record all information present in the

diffraction intensities is ∆u = 1/(2D), the Shannon critical sampling frequency, and the

function can be recovered everywhere by a sinc-series expansion of the measured samples.26

We define the sampling ratio s per dimension with w = sD (Shannon sampling of intensities

occurs for s = 2). The oversampling of data relative to the sampling of ∆u = 1/D is what

enables the phase retrieval techniques to be employed. In practice we may collect data on

a finer grid than strictly required to completely specify the diffraction intensities, as a way

to increase detector dynamic range (sampling with s > 2 does not increase the information

content of the measurement). However, it is possible to successfully retrieve phases from

measurements with less than this factor of two in each dimension.27 The minimum required

10



OSA
Published by

sampling ratio has been shown by simulation to be
√
2 for 2D images and 3

√
2 for 3D images.28

The CCD must be placed so that it intersects a large enough range of scattering angles up

to the desired spatial resolution. Usually the CCD is far enough away from the sample to be

in the diffraction far-field, in which the angularly-resolved diffraction pattern does not vary

with propagation distance. For an object of width D the far field exists beyond distances

of zF = 2D2/λ from the object.29 For a detector with pixels of width p placed a distance

zD from the object, we have, for small scattering angles, ∆q = p/(zDλ). That is, to sample

a field width of w = sD the detector must be placed a distance of zD = spD/λ. This will

be in the far-field if zD > zF , which can be satisfied if D < sp/2, or the condition that the

sample must be smaller than the CCD pixel spacing when s = 2. If the CCD is closer to the

sample than zF then the sample and diffraction planes are related by a Fresnel, rather than

a Fourier, transform, and the reconstruction algorithms must be appropriately modified.

Experimental requirements are placed on the transverse and longitudinal coherence of

the incident beam. The transverse spatial coherence length of the incident beam must be

at least as large as the entire field width w = sD.30 The effect of partial coherence may

be modeled as an incoherent source located some distance from the sample, whereby the

diffraction intensity pattern is convolved with a demagnified intensity image of the source.

In real space this convolution modulates the autocorrelation of the object with an envelope

function which is proportional to the modulus of the transform of the source function. By the

Van Cittert-Zernike theorem,21 this envelope function is the mutual coherence of the source.

The measured diffraction intensity is also convolved with the pixel response function of the

detector, which modulates the autocorrelation image with an envelope proportional to the

Modulation Transfer Function (MTF) of the detector. The spectral bandwidth ∆λ/λ of the
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incident light should be narrower than 2/N since we require ∆q/q = ∆λ/(2λ) so that the

range of angles diffracted from a single spatial frequency by a range of wavelengths spreads

by no more than half a detector pixel. This is equivalent to a minimum required longitudinal

coherence length of wqmaxλ = 2w sin θ, which will be the maximum path-length for light

scattering by 2θ to the edge of the detector from points spaced transversely by w, or by the

same angle from points spaced longitudinally by w/ tan 2θ.

In our experiments we rotate the sample about an axis perpendicular to the incident beam

direction to build up the 3D dataset. At the highest spatial frequencies recorded, an angular

increment of ∆φ leads to a spacing between the Ewald sphere surfaces of ∆q = qmax ∆φ.

That is, the Crowther resolution31 matches the critical sampling of the diffraction intensities

(s = 2) when

∆φ = ∆q/qmax = ∆x/D, (6)

with the real-space sampling interval ∆x. Note that this angular increment leads to a higher

than necessary sampling at the lower spatial frequencies. For the examples in this paper we

collected diffraction data with angular increments that are 2–4 times larger than given by

Eq. (6). In the process of phase retrieval we additionally recover both the amplitudes and

phases of the missing data between the Ewald surfaces, including those in a large gap re-

sulting from a limited range (usually ±70◦) of rotation angles, data blocked by a beam-stop,

and the missing “cone” of data resulting from rotating the sample about a single axis. This

amplitude and phase retrieval of the missing data is essentially a super-resolution technique

and is achieved with the same real-space image constraints that we use for phase retrieval.32

Recovery of unmeasured data behind a beamstop has been demonstrated previously in 2D
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coherent X-ray diffraction imaging using this technique,6,33 and data missing due to a limited

number of views have been recovered in the context of computed tomography using iterative

algorithms34 similar to those we use (described in Sec. 2.C). Depending on how much ampli-

tude information is missing, there will be a null space of images which are not constrained

by the real or reciprocal space constraints32,35 and which may need to be regularized in the

reconstruction.36

2.B. Interpolation of the Diffraction Intensities

We interpolate the diffraction intensities measured on the CCD detector onto a regular

Cartesian grid. The location of the CCD pixel indexed by integers (i, j) is given by the

vector pi,j = p(i î+ j ĵ), relative to the pixel intersecting the direct beam, as shown in Fig. 1.

We have then, with kin = (1/λ)k̂,

qi,j = kout − kin =
1

λ





pi,j + zDk̂
√

p2
i,j + z2

D

− k̂



 , (7)

where zD is the distance from the sample to the detector. Hence, for example,

qxi,j = qi,j · î =
1

λ

p i
√

p2(i2 + j2) + z2
D

, (8)

qzi,j = qi,j · k̂ =
1

λ

(

zD
√

p2(i2 + j2) + z2
D

− 1

)

. (9)

In practice each diffraction pattern in our data set has a different rotation in the 3D Fourier

space of the object, and the coordinate of each pixel in this space is given by

ui,j,φ = Rφ qi,j, (10)

where Rφ is the 3D rotation matrix derived from the known object orientation. The coor-

dinates ui,j,φ are then mapped onto a uniform Cartesian grid by nearest-neighbor sampling.
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Where more than one pixel from the set of intensity measurements contribute to a given

voxel, the pixel values are averaged to determine the appropriate intensity value at that

point. We find that for the datasets we have collected, where the angular increment ∆φ is at

least four times larger than the condition specified by Eqn. (6), nearest neighbor interpola-

tion gives slightly better reconstructions than bilinear interpolation. At the high resolutions,

where the reciprocal space distances between data from adjacent object orientations is sev-

eral pixels, the latter method leads to many interpolated values that are simply some fraction

of their neighboring value. We find it better in this sparse case to have the intensity value

concentrated at a single u position (even if that position is slightly wrong) than distributing

the intensity value over a cluster of voxels.

We note that there are alternatives to the nearest-neighbor interpolation onto a regular

grid that we use in this work. The interpolation could be avoided by solving the inverse trans-

form by inverse methods, such as performed in the computer program back [37, Sec. A5.3]

which utilizes a constrained conjugate gradient solver and which is used in the computer pro-

gram speden
38 (speden is a program to perform 3D phase retrieval, designed specifically to

optimally include prior data and avoid instabilities caused by interpolation.) Alternatively,

it should be possible to employ fast algorithms to compute discrete Fourier transforms of

non-equispaced data (NDFTs).39 In the non-diffracting limit (i.e. computed tomography, or

CT) the reconstruction method of filtered back-projection can be shown to be a compu-

tationally efficient method that is equivalent to Fourier synthesis via a polar-to-Cartesian

interpolation.40,41 A corresponding algorithm, called filtered back-propagation,42 has been

developed for the diffracting case where the diffraction amplitude and phase are measured,

which again can be shown to be equivalent to Fourier synthesis after interpolation.43
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2.C. Phase Retrieval

Our phase retrieval method follows from previous work on 2D diffraction imaging.6–8,44 In

particular, we have extended the Shrinkwrap algorithm6 to operate on 3D arrays. This

algorithm is based on an iterative transform algorithm (ITA), which cycles between real and

reciprocal space, respectively enforcing the constraints of known object support or known

diffraction modulus. Usually an ITA requires knowledge about the shape of the object to

set the support constraint. This support is usually larger than the actual boundary of the

object; what is termed a loose support. For general complex-valued objects (e.g. consisting

of more than one element or compound), where a positivity constraint can not be applied,

the ITA gives higher-quality reconstructions when the support constraint more closely and

tightly matches the object’s boundary.45 The reason for this is explained in Sec. 4.B. The

Shrinkwrap algorithm periodically updates the estimate of the support based on the current

object estimate. The updated support is chosen by low-pass filtering the current estimate

and setting the support to be the region for which the intensity is above a certain threshold

(usually a prescribed fraction of the maximum image intensity). The method can be started

from an estimate of a very loose support, from a threshold of the object’s autocorrelation

function, or even the entire array. A method which exists for finding an estimate of the

object support from the autocorrelation function’s support could also be used.46,47 While the

Shrinkwrap method can be used with any ITA, such as the Hybrid Input-Output (HIO)48 or

Difference Map49 algorithms, we used the HIO and Relaxed Averaged Alternating Reflections

(RAAR)50 algorithms for this work.

Many of the phase retrieval ITAs can be written as fixed point iterative equations, which
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can be written generally in the form gn+1 = T gn, for a generic operator T . The RAAR

algorithm can be represented by the fixed point iterative equation of the complex-valued

real-space image iterate g:50

gn+1 =

[

1

2
β(RS RM + I) + (1− β)PM

]

gn

= [2β PS PM + (1− 2β)PM + β(PS − I)] gn,
(11)

where the operator R = 2P − I is the reflector corresponding to the projector P , I is the

identity operator, and β is a feedback parameter, which we usually set to β = 0.9. The two

operators PM and PS are the projections onto the modulus constraint and support constraint,

respectively. We apply the modulus according to

PM g = F−1







































G(u)
|G(u)|+ε

(

√

I(u) + σ√I(u)
)

, if G(u) >
√

I(u) + σ√I(u),

G(u)
|G(u)|+ε

(

√

I(u)− σ√I(u)
)

, if G(u) <
√

I(u)− σ√I(u),

G(u), otherwise, or u 6∈M

(12)

where σ√I is the estimated standard deviation of the measured diffraction amplitudes,

G(u) = F{g(x)}, and ε is a small number. M is the set of u where I(u) has been measured.

For example, u 6∈ M in the missing sector of data present when diffraction is recorded over

a limited range of angles. The operator PM of Eqn. (12) retains the phase of the complex

Fourier amplitude G(u) and projects its modulus |G(u)| to the nearest measured diffraction

amplitude, in the interval [
√

I(u)−σ√I(u),
√

I(u)+σ√I(u)] (or does nothing if the modulus

already lies within that range or if I(u) has not been measured). Given the support S from

Shrinkwrap, we apply the support constraint when retrieving the phase of a complex image
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using

PS g =



















g(x) if x ∈ S

0 otherwise.

(13)

We also perform phase retrieval where we impose real and positive constraints on the image

amplitudes, where we replace PS with

PS+ g =



















<{g(x)} if x ∈ S and <{g(x)} > 0

0 otherwise.

(14)

The HIO algorithm can only be written in terms of a fixed point iterative equation when

applying the support constraint PS, but not when applying positivity constraints.50 In general

the HIO algorithm is given by

gn+1 =



















PM gn, if x ∈ S ′

(I − β PM)gn, otherwise,

(15)

where S ′ is the set of elements where PM gn satisfies the support and (if desired) the reality

and positivity constraints. As with the RAAR algorithm we use a value of the feedback

parameter β = 0.9.

Regardless of algorithm, we monitor the reconstruction with the real-space image error

E2
S ≡

∑ |gn − PS gn|2
∑ |PS gn|2

=

∑

x6∈S |gn(x)|
2

∑

x∈S |gn(x)|
2 . (16)

This metric is a measure of the total power in the image that remains outside the support, and

is zero for the case of perfectly satisfying the real-space constraints. We define, in a completely

analogous way to Eqn. (16), the error EM corresponding to the modulus constraint defined

by PM :

E2
M ≡

∑ |gn − PM gn|2
∑ |PM gn|2

=

∑

∣

∣

∣
|Gn| −

√
I
∣

∣

∣

2

∑

I
, (17)
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where the equality follows from Parseval’s theorem and is true only for σ√I = 0. The error

metrics ES and EM are the normalized distances between the current iterate gn and the sup-

port or modulus constraint set, respectively. The reconstructed image from a reconstruction

run (from a particular set of starting phases) is given by

γM = PM gn, (18)

for the final iterate gn of both the RAAR and HIO algorithms.

The Shrinkwrap algorithm has been used previously to reconstruct 2D images of thin

objects at a resolution of about 20 nm.6 We have found in subsequent studies that the step of

updating the support would sometimes shrink the support to a shape smaller than the actual

boundary of the object. To counter this effect we have improved the Shrinkwrap algorithm

to prevent it from over-shrinking the support. Depending on the parameters of the low-pass

filter and the threshold level, the support may start to cut off the extremities of the object. At

this point the support constraint error E2
S increases rapidly and the reconstructions rapidly

degrade with further iteration. This error is thus a good indicator of when the halt the support

refinement. We simply monitor the error metric and when it increases above a set point we

choose the support saved from 10 iterations prior. This then becomes our best estimate of

the support and is used as a fixed support in combination with the RAAR algorithm for

many more (typically 100 to 1000) iterations. We further decrease the uncertainty of the

retrieved phases by averaging the retrieved complex images from independent and random

starting diffraction phases using the Shrinkwrap-derived support constraint36 as described

in Eqn. (18) of Sec. 5.A. If the phase at a particular spatial frequency is randomly recovered

from trial to trial, the average modulus will average to zero, and hence be filtered out of the
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recovered image.

The 2D reconstructions shown in this paper were reconstructed using the RAAR algorithm

(Eqn. 11) and the 3D were performed using a combination of HIO (Eqn. 15) and RAAR.

A typical reconstruction process proceeds as follows. First we define the initial object sup-

port mask by applying a 2% intensity threshold to the object autocorrelation, obtained by

Fourier transforming the measured diffraction pattern. The support constraint, defined by

the current object mask, is applied to the solution in real space once per iteration. We typ-

ically use a feedback parameter of β = 0.9 in the RAAR or HIO algorithms. The object

support S is recomputed every 30 iterations by convolving the absolute value of the current

reconstruction γM with a Gaussian of FWHM of initially three pixels in all dimensions and

applying a threshold to the resultant image at 15% of the maximum value. As the iterations

progress we reduce the width of the Gaussian blurring function from three pixels to one

pixel, following the prescription wS = 1 + 2 exp(−n2/n2
w), with nw regulating the speed at

which wS decreases with iteration number n. The reduction in the blurring width enables the

support to better conform to the solution as the quality of the reconstruction increases. We

perform this Shrinkwrap support determination without applying any real-space positivity

or reality constraint on the image amplitudes (that is, we use the constraint PS in the RAAR

algorithm, or S ′ = S in the HIO algorithm). The final support is usually obtained after 300

to 600 iterations, with a stopping criterion that the support constraint error E2
S does not

exceed 0.2. Once the support is determined we carry out many iterations of the RAAR algo-

rithm, starting from random phases, using a feedback parameter of β = 0.9. In some cases,

additional real-space constraints, such as positivity or reality of the image amplitudes, are

also applied.
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As shown in Eqn. (12), in diffraction space the amplitudes of the object guess are matched

in magnitude to the measured diffraction pattern amplitude over those parts of 3D diffraction

space where the measured intensity is defined. Those parts of 3D diffraction space where there

is no measured data are allowed to float and are not constrained. This includes the regions

between the measured Ewald spheres, the missing wedge of data from the finite range of

rotation angles, the central beamstop region, and those parts of the diffraction pattern where

the measured intensity is sufficiently low to be regarded as noise. An additional, optional

Fourier space constraint is to set those pixels beyond the radius of the spatial frequencies

measured by the CCD chip to zero. This asserts lack of knowledge of spatial frequencies

higher than those measured by the CCD camera, and effectively provides a pupil function

for the imaging system in three-dimensional space.

Providing an initial guess for the 3D object support is not typically necessary but speeds

the reconstruction process and helps break inversion symmetry present in the object auto-

correlation. An initial 3D support estimate can be obtained from the diffraction data by first

performing Shrinkwrap phase retrieval on a 2D central section, as described in Sec 4.C. We

then extrude support mask into a 3D shape that is invariant in the projection direction and

which matches the 2D mask that was generated in all planes normal to this direction, to

provide an initial 3D support estimate. If several 2D reconstructions are available from a

range of views, the intersection of these support functions in 3D can be used to provide a

more detailed initial support estimate. Experience has shown that even a low-resolution or

comparatively poor support estimate is sufficient to almost immediately break any inversion

symmetry in the reconstruction and hasten convergence of the 3D solution. If three or more

extruded support functions are used to form an intersection then the support functions may
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need to be initially aligned to form an intersection, although the Shrinkwrap algorithm will

usually improve the support even if misalignment yields a too-small intersecting volume.

A better method for providing an initial support estimate appears to be obtainable from

intersection operations of the support of the autocorrelation function,46,47 which is readily

computed as described in Sec.3.C. Although we have not yet attempted it, we believe that es-

timating the initial support from the support of the autocorrelation, followed by the dynamic

support constraint of Shrinkwrap should provide a very robust reconstruction methodology.

3. Methods

3.A. Sample Preparation

A goal of this study was to be able to unambiguously compare reconstructed X-ray images

of a three-dimensional object with images obtained by another high-resolution method, such

as a scanning electron microscope (SEM). To accomplish this we fabricated a test object

that consists of a silicon nitride membrane with a three-dimensional pyramid shape that is

decorated with 50-nm-diameter colloidal gold spheres, similar to that previously described.7

The object is three-dimensional and has a comparable width, height, and depth, measuring

2.5µm × 2.5µm × 1.8µm.

The pyramid-shaped membrane was fabricated by lithography using methods similar to

those to make silicon nitride windows and silicon nitride atomic-force microscope (AFM)

tips. The starting material was a double-side polished 200µm thick wafer of silicon crystal

with the crystal 100 axis oriented normal to the surface. Pits with an inverted pyramid shape

were etched into one side of the wafer by anisotropic etching through a pattern of 2.5µm-

width square holes, lithographically printed and developed in photo-resist. The anisotropic
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etch leaves the 111 crystal planes exposed, so that the surface normal of any one of the four

faces of the pyramid makes an angle of 54.7◦ to the window normal and the ratio of the

depth of the pit to its base width is 1/
√
2. After removing the photoresist a low-stress silicon

nitride film of 100 nm thickness was grown on the surface by chemical vapor deposition.

Window openings were then etched from the other side of the wafer after first resist coating

and patterning that side, making sure to align to marks etched in the front surface. The

etch from the back removes silicon, but leaves a free-standing membrane of silicon nitride,

which in this case had one pyramid-shaped indentation per window. The windows were made

with a slotted shape of about 2 mm width by 50µm high. With the 200µm thickness of the

silicon frame and the pyramid positioned in the center of the window, this allows a line of

sight through the window at a maximum rotation angle (about an axis in the plane of the

window, parallel to the short window dimension) of 78◦.

The gold-sphere test object was made by dragging a small drop of solution of gold balls in

water, suspended from a micro-pipette, across the silicon nitride window so that it intersected

with the pyramid indentation. Best success was achieved with a slightly hydrophilic silicon

nitride surface, which could be obtained by cleaning the surface in an oxygen plasma. As

the drop was moved over and away from the indentation, a smaller drop broke away from

the main drop and was captured in the pyramid. This drop quickly evaporated and left

the gold balls in a characteristic pattern where the gold tended to fill in the edges of the

pyramid. The main drop was completely dragged away from the window, so the only gold

balls on the window were those in the pyramid. A plan-view SEM image (membrane and

wafer perpendicular to the electron beam) of the object is shown in Fig. 2. The SEM is

however only sensitive to the surface of the object—the electrons do not penetrate the gold
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spheres nor the membrane. The depth of focus of the SEM was larger than the thickness of

the object, and from the plan view we can determine the lateral coordinates of the topmost

balls and infer the third coordinate from the known geometry of the pyramid.

The silicon nitride window was glued to a pin so that the pyramid was close (within about

20µm) of the rotation axis of the pin. The pin was mounted in a collar that was attached to

a JEOL electron microscope sample holder. This assembly was mounted into the modified

goniometer holder of the diffraction apparatus.17

3.B. Data Acquisition

Experiments were carried out at an undulator source at beamline 9.0.118 of the Advanced

Light Source (ALS) using the Stony Brook University diffraction apparatus.17 Pertinent

to this experiment, 750 eV (1.65 nm wavelength) X-rays were selected from the undulator

radiation by a zone-plate monochromator with a spectral resolution of λ/∆λ = 1000. The

5-µm-diameter monochromator exit pinhole also selects a transversely spatial coherent patch

of the beam. The sample was located 20 mm from this pinhole. A direct-detection bare CCD

detector, with 20µm pixel spacing, 1340 × 1300 pixels, was located 142 mm behind the

sample. We selected sub-arrays of 1200× 1200 elements, centered on the location of the zero

spatial frequency (direct beam). At these CCD and wavelength settings we have a real-space

sampling interval in x and y of ∆x = 9.8 nm (in the small-angle approximation) and a field

width of w = N∆x = 11.7µm. With these settings the 2.5µm-wide pyramid object satisfies

the far-field and sampling conditions discussed in Sec. 2.A. The diffraction from the pyramid

object is more than 4× oversampled in each dimension (s = 4.6).

The frame of the slotted window in which the pyramid is formed blocks most of the
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high-angle scatter from the pinhole that would otherwise illuminate the CCD. This scatter

reveals a projection shadow image of the slotted window, useful for aligning the pyramid to

the beam. The diffraction pattern of the pyramid measured by the CCD is shielded from

this remaining pinhole scatter with a small aperture placed 6mm upstream of the sample

(a distance at which the sample can be rotated without interference). A beam-stop blocks

the direct undiffracted beam from impinging on the CCD. More details are given by Beetz

et al.17

Diffraction patterns were collected with the sample oriented at rotation angles of −57◦

to +72◦, at 1◦ intervals (compared with 0.27◦ angular increments required for full sampling

according to Eqn. (6)). The shadow of the sample support frame limited useful data to −57◦

to +66◦. We additionally collected data at 0.5◦ increments for a range of 19◦ centered at an

object orientation of φ = −26◦ from the head on (φ = 0◦) orientation. To keep the sample

centered in the 5µm beam, the position of the sample was calibrated by performing a two-

dimensional raster scan of the rotation and y goniometer motors. The total scattered counts

(not including those blocked by the beam-stop) were collected for each motor position and

the optimum y position (a translation motion perpendicular to the rotation axis) was then

computed for each rotation angle, and these were fit to a smooth curve as a function of

rotation angle. To collect the 3D dataset, at each rotation angle we took several exposures

to accommodate the large dynamic range of 105 of the diffraction pattern, and to reduce

the area occluded by the beam-stop (by setting the beam-stop to different positions). After

subtracting dark noise, pixel data that were not saturated and not masked by the beam-stop

were summed over these exposures, and then normalized by the accumulated incident flux

corresponding to that sum. A typical diffraction pattern is shown in Fig. 3 (a), which was
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composed of 10 or more individual exposures of 0.1 s, 1 s, 10 s, and 60 s duration, for a cu-

mulative exposure of 73 s. The diffraction pattern intensities are displayed on a logarithmic

greyscale in Fig. 3. At the highest angles of the pattern (highest resolution, at 0.07 nm−1,

along the diagonal) the mean photon count is 1.9 photons per pixel for this sample orien-

tation. The maximum normalized photon count, which occurs in a pixel near the center of

the pattern is 109,000 photons. The estimated incident flux was 8× 109 photons/s/µm2 (per

400mA of storage-ring current), and the normalized incident fluence for the accumulated

sum of Fig. 3 (a) was 3 × 1011 photons/µm2. The total normalized scattered counts at the

CCD over the accumulated exposure time for the pattern in Fig. 3 (a) was 1.6×108 photons

(equal to the total counts that would be recorded if the detector had infinite dynamic range

and did not saturate).

Views of the diffraction data cube are shown in Figs. 4 (a)–(c) and discussed in Sec. 4.A.

This cube was assembled from the 123 diffraction patterns at 1◦ sample orientation incre-

ments, and 32 patterns at half-degree intervals, by interpolating onto ui,j,φ. The total inte-

grated exposure time for the complete dataset was 3.2 hours, with a total incident fluence

of 5× 1013 photons/µm2.

3.C. Data Diagnostics

As seen in Eqn. (5) the autocorrelation of the object can be determined from a single inverse

Fourier transform of the measured data without having to recover the diffraction phases.

We find that computing the autocorrelation image from the measured diffraction data is a

useful diagnostic to determine if the measurement fulfills the sampling requirements, to help

identify the object, and to assess the measurement quality. The inverse Fourier transform
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of the diffraction pattern shown in Fig. 3 (a) is given in Fig. 3 (b), after first applying the

high-pass filter described below in Eqn. ((19)) to remove effects due to the abrupt intensity

change caused by the beamstop. The displayed autocorrelation image has been cropped by

half in width and height from the inverse Fourier transform of the diffraction pattern, since

with the linear greyscale displayed the rest of the field was black. This autocorrelation image

has a well-defined support which is confined within the image field, showing that we are

indeed oversampling the diffraction intensities.

The Fourier relationship of Eqn. (5) offers a further method to diagnose the diffraction

pattern I(q) as a function of the spatial frequency q across the pattern. A property of

the Fourier transform of a function, often discussed in the context of holography, is that

a sub-region of the transform (or hologram) can be inverse Fourier transformed to give a

spatial-filtered image of the original function. The field of that image is the full field of the

original function. The filtered image may differ from sub-region to sub-region, since each

sub-region contains information pertaining to particular spatial frequencies of the original

object function. Nevertheless, for non-periodic object functions, these images should be con-

sistent and not vary too dramatically between neighboring regions. Large inconsistencies in

images formed in neighboring regions point to inconsistencies in the measured diffraction

data. This gives a convenient way to qualitatively check the diffraction intensities (and also

reconstructed phases) across the diffraction pattern, by forming an array of sub-images, each

corresponding to a particular sub-region. We term this array a “spectrogram”, since it dis-

plays the image information as a function of spatial frequency, much like the time-frequency

spectrograms used in audio analysis. We apply the spectrogram analysis both to the auto-

correlation image, and to reconstructed images to determine the consistency of the data or
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reconstructed phases.

An example of an autocorrelation spectrogram is shown in Fig. 3 (c), where each image

is formed by applying a 2D Gaussian window function to the diffraction pattern, centered

at a location indicated by the image position in the array. One effect that is immediately

noticeable to the eye is that, at the higher resolution positions, the images vary according

to their azimuthal position in the spectrogram. In particular, features that are tangential

to circles of constant resolution have greater contrast than features that vary in a radial

direction. The effect gives the appearance that the spectrogram is rendered onto the surface

a sphere, but is in fact a signature of limited longitudinal coherence of the incident beam.

For a given q, represented in the spectrogram by the position of the image, pairs of points

of the object that are perpendicularly bisected by the vector q will interfere with zero path

difference. These points will interfere with the same phase for all wavelengths (assuming no

dispersion of the scattering factors). The path difference at q of other pairs of points along

this line perpendicular to q depend only in second order on their mean displacement from

the direction of q. The path differences of rays scattering from pairs of points separated

in the radial direction, however, vary to first order on their radial separation. Therefore,

a limited longitudinal coherence, which limits the path difference over which interference

occurs, will reduce interference for points separated by a direction parallel to the q vector by

a much greater extent than for the perpendicular direction. The spectrogram gives a good

visual determination of the degree of longitudinal coherence, and we see from Fig. 3 (c) that

the longitudinal coherence is adequate for diffraction out to the center edge of the pattern

(Fig. 3 (d)), but not quite adequate for the corner of the pattern (Fig. 3 (e)). By comparison

to spectrograms of simulated diffraction patterns, we estimate that the relative bandwidth
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of the incident beam in this case is approximately ∆λ/λ = 1/600.

It is also clear from Fig. 3 (c) that the data are inconsistent at the low spatial frequencies,

since at those q positions there is noticeable intensity outside the support of the pyramid

object autocorrelation. This is due to the fact that low-frequency data are missing due to

the beamstop, and also to a lesser degree due to scattering from the sample substrate or the

coherence-defining pinhole. The data are visibly noisier in windowed regions located in the

first three rows of the fourth column of Fig. 3 (c), due to the stalk that holds the beamstop

and which was moved over several positions in this region for the cumulative exposure.

The noise and inconsistency can cause the Shrinkwrap algorithm to fail (in which it keeps

shrinking beyond the object’s boundary), especially when applied without an image-space

constraint such as positivity. We find the Shrinkwrap algorithm consistently converges to a

stable object support when we apply a high-pass filter to the diffraction intensities prior to

interpolation. This filter has the form

f(q) =



















(q/2a)4 exp(2− q2/2a2), if q < 2a,

1, otherwise,

(19)

where q = |q| and the filter radius a is 100 pixels, or less than 10% of the array width.

The image thus formed will be a high-pass filtered image, equivalent to the coherent image

formed by a lens with a central obscuration. The filter was applied to the data of Fig. 3 (a),

prior to Fourier transformation, to diminish the effects of the beamstop. This filter also

regularizes the inverse transform, which is ill-posed in part due to the missing data behind

the beamstop,32,35 by simply setting the unknown intensities to be zero. The effect of this

high-pass filter is to convolve the coherent image with the Fourier transform of the filter.
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This causes a ringing of the image, which gives rise to negative amplitudes in the image, and

a slightly larger image support. We also zero the diffraction intensities of the bright cross

streaks seen in the x-z central section, to suppress artifacts that they may cause.

3.D. Computational Implementation

The two key computational challenges in implementing high-resolution 3D phase retrieval at

the time or writing are performing the numerous 3D FFTs required in a reasonable period

of time and managing the memory requirements of the large 3D data arrays.

Memory requirements are dictated by the size of the data sets acquired and by the phase

retrieval algorithms used. For the iterative transform phase retrieval methods described in

Sec. 2.C we require four or more 3D arrays with the same number of elements as the inter-

polated input diffraction volume. Specifically, the arrays required are the input diffraction

modulus data (
√

I(u), floating point), the current and previous iterates (gn(x) and gn−1(x),

complex floating-point data) and the support constraint (S, byte data). The estimated mod-

ulus standard deviation, σ√I requires another floating point array, but in the 3D reconstruc-

tions we set σ√I = 0 to reduce the memory requirement and speed up the reconstructions.

In principle fast Fourier transforms can be performed on arbitrary sized arrays, however it

is advantageous to perform reconstructions on a regular grid with 2n grid points on a side.

Our interpolated data array is a giga-voxel data cube containing 10243 = 230 elements which

requires a total of 8GB of computer memory per array for single-precision complex data. The

minimum memory footprint for single-precision iterative object reconstruction using either

the HIO or RAAR algorithm on a 10243 data cube is therefore 2×8GB complex arrays, plus

1× 4GB diffraction cube data and 1× 1GB support array, giving a total memory footprint
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of 21GB of data, where we use the definition of 1GB = 230 bytes. The minimum memory

footprint for performing basic HIO and RAAR reconstruction on 3D arrays of different sizes

is given in Table 1. Note that this is the minimum memory footprint needed to perform a

HIO reconstruction and that more memory may be required depending on the specific imple-

mentation. For example, FFT speed can be increased through use of temporary “workspace”

arrays which require additional memory, and maintaining a running sum of successive im-

ages γM requires an additional complex-valued array to be retained in memory. The memory

calculations above include only the data arrays and do not take account of operating system

requirements and the executable code itself.

The second computational challenge is efficient evaluation of the numerous 3D Fourier

transforms required for 3D phase retrieval. The Fourier transform of a single large data set

is not trivially parallelizable, in that the problem can be easily broken into separate parallel

tasks and distributed over many computer processors as is the case, for example, with ray

tracing and partially coherent imaging where each CPU can work on a sub-set of the entire

problem without the need for intensive inter-node communication during execution. The

nature of the Fourier transform means that any one element of the input array affects all

elements of the output, requiring inter-node exchange of array data at each Fourier transform

step to ensure that all CPUs work together to solve the one large FFT.

We overcome the problem of efficiently calculating distributed Fourier transforms by using

the dist fft distributed giga-element fast Fourier transform library from Apple Computer

specifically written for this project by the Apple Advanced Computation Group.20 This FFT

library distributes the Fourier transform calculation load efficiently over many processors and

has been hand-optimized to take advantage of the G5 architecture used in the Apple Mac-
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intosh line of computers and the “Altivec” single-instruction-multiple-data (SIMD) floating

point vector processing unit. Distributed FFT libraries are also available elsewhere, for ex-

ample in version 2 of the FFTW libraries,51 but at this time these do not support SIMD

vector processing extensions and proved to be slower on our platform. dist fft decomposes

the input 3D data set into nproc discreet data slabs consisting of a n × n × (n/nproc) voxel

sub-portion of the original data array. Only a distinct portion of the array resides on each

CPU at any given time enabling data sets much larger than the memory of each individual

node to be computed, and the distributed memory nature of the FFT is exploited through

parallelization of all steps in the reconstruction code. Standard message passing interface

(MPI)52 commands are used to communicate data between processes.

We ran fully parallelized reconstruction code on a 16-node 2.0GHz dual-processor (32

processors total) Macintosh Xserve G5 cluster with 4GB RAM per node. To maximize

inter-process communication speed we used high-speed, low-latency Mellanox Infiniband in-

terconnects to carry MPI traffic between compute nodes. Using this cluster the processing

time on a 5123 array is 2.2 seconds per iteration using the HIO phase retrieval algorithm, and

an acceptable 3D reconstruction can be produced in under 2500 iterations for a total compu-

tation time of 2.5 hours on a 5123 grid. The individual FFT timing and total reconstruction

time for typical array sizes on this cluster is given in Table 2.

4. Image Reconstruction

4.A. Three-Dimensional Images

A full 3D image is obtained by performing phase retrieval on the entire 3D diffraction dataset.

The resulting volume image reveals the structure of the object in all three dimensions and
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can be visualized in many ways including forming projections through the data or slices

(tomographs) of the data. Specific segmentation analyses can be carried out on the volume

image to determine properties such as strength of materials.53 Three-dimensional reconstruc-

tions were performed by interpolating the diffraction intensities at ui,j,φ onto a 10243 grid.

Representations of the interpolated diffraction intensities are given in Fig. 4. Note that the 1◦

angular increments of the object rotation are just less than four times larger than the 0.27◦

requirement of Eqn. (6) for this object, and that we have a 40◦ sector of missing data due

to our limited range of object orientations, as well as data lost to the beamstop. The effect

of the 1◦ rotation increment is apparent in Fig. 4 (b), where the gaps between the measured

Ewald spheres are seen in the ux-uy plane (referred to as a central section) extracted from

the data cube. The limited range of views are readily apparent in Fig. 4 (c), which shows

the ux-uz central section.

The three-dimensional phase retrieval code described above in Sec. 3.D was applied to the

assembled 3D data to produce a full 3D reconstruction from the diffraction cube. We applied

the Shrinkwrap algorithm, as described in Sec. 2.C, to determine the 3D support mask and

the diffraction phases. We performed phase retrieval using either the real-positive real-space

constraint PS+ or the support constraint PS. For the complex image reconstruction, as with

the case of reconstruction from central sections discussed below in Sec. 4.C, the solution was

regularized by first applying the high-pass filter of Eqn. (19) to the diffraction intensities.

For the real positive reconstruction the missing amplitudes were unconstrained and were

allowed to be recovered by the algorithm. The reconstruction success with the sparsity of

data we have in this case is undoubtedly due to the sparseness of the object itself. In essence

the object is a membrane, and the 3D speckles are elongated by up to 50 pixels in directions
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perpendicular to the pyramid faces, as can clearly be discerned in Fig. 4 (c).

A 3D iso-surface rendering of the real-positive constrained reconstructed pyramid is shown

in Fig. 2 (c), where we also display a slice from the volume image in Fig. 2 (d). Three images

from the 3D pyramid image are shown in Fig. 5, showing the maximum value projection,

along the three orthogonal axes, of the real part of the 3D image that was reconstructed

using the support constraint with real positivity, PS+. Each pixel of this image is given by

the maximum value encountered along the path that projects onto that pixel, and illustrates

a visualization method available only with the full 3D image array. In initial reconstruction

trials using only a support constraint PS we observed a linear ramp in the imaginary com-

ponent. This was essentially a phase ramp, due to a shift of the diffraction data in Fourier

space caused by an inaccurate measurement of the location of the zero spatial frequency (the

direct beam) on the CCD. We shifted the diffraction data by an amount that minimized the

real-space phase shift, which required shifting the data by half-pixel amounts. This recen-

tering of the data was necessary before we could apply the real positive constraint on the

image. Further analysis of the images is carried out in Sec. 5. Movies of the reconstructed

image and 3D diffraction intensities are available on the web.54

4.B. Two-Dimensional Images

Two-dimensional images are useful for visualizing and quantifying objects, and most diffrac-

tion imaging experiments performed to date have been 2D. However, if the object is thick,

then the interpretation of an image reconstructed from a single Ewald sphere is not trivial.

Most notably, as compared with our full reconstructed 3D image, the 2D image will have

defocus artifacts that do not diminish in power with displacement of the object along the
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beam axis. However, in some cases obtaining a full 3D reconstruction may not be achievable,

for example when imaging non-reproducible objects with single pulses of an XFEL. It is thus

instructive to compare 2D images reconstructed from single-view diffraction patterns with

the 3D image.

We first consider how thin an object must be to be considered two dimensional. In a 2D

reconstruction from a single diffraction pattern, the spatial frequencies that are passed to

the diffraction pattern are constrained on the Ewald sphere according to

qz = 1/λ−
√

1/λ2 − q2
x − q2

y ≈ −
λ

2

(

q2
x + q2

y

)

, (20)

where the approximation is for small scattering angles, or qx ¿ 1/λ. We can define the

numerical aperture of the diffraction pattern as NA = qx,max λ, in analogy with imaging

with a lens (of square aperture for the case of a square detector, with the NA defined here

along the half-width of the square rather than the diagonal), which gives the expression of

maximum longitudinal distance of the Ewald surface, qz,max ≈ −NA2/(2λ). For a 2D object

of thickness D → 0, the 3D transform will be independent of the longitudinal frequency

qz (rods in the z direction) and so the measurement on the Ewald sphere is equivalent to

measurement of the 2D diffraction intensities |O(qx, qy, 0)|2. In such case there will be no

artifact in the image caused by not actually measuring intensities on qz = 0. An object

of finite thickness D will have a coherent diffraction pattern with speckles of width 1/D

in the longitudinal direction. If, at the highest transverse frequencies, the Ewald sphere

substantially cuts through a speckle that is centered at qz = 0, then the measurement will

again be equivalent to the 2D diffraction intensities on the qz = 0 plane. That is, we can

consider an object to be thin or two-dimensional if the Ewald departure is no more than
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1/(4D), or half the speckle half-width, which corresponds to

D <
λ

2NA2 , (21)

or, equivalently, the thickness D must be less than a depth of focus. For the experiments

with the pyramid object at λ = 1.65 nm and NA = 0.084, this thickness limit is D = 120 nm,

which is considerably smaller than the 1.8µm thickness of the pyramid.

Equation (21) does not imply, however, that diffraction imaging performs optical sectioning

where only the parts of the object located within the depth of focus are imaged. The thickness

limit simply implies that the 2D single-pattern image of an object thicker than D will contain

artifacts due to the information that is cut off by the transfer function. Consider an object

containing two parts (e.g. screens) that are separated by more than a depth of focus. As

with coherent imaging with the equivalent aberration-free thin lens, partial information

from both screens of that object will be transferred in the imaging process. In fact, in

diffraction imaging, there is not necessarily any preferred image plane since, by the Fourier

shift theorem, a shift δz of an object along the beam axis z will cause only a phase shift given

by −2πδz qz and hence no change to the diffracted intensities (for small enough δz that the

change in distance to the detector does not change the effective NA and scale the pattern

on the detector). Note that from Eqn. (20) the phase shifts of the 2D spatial frequencies

of the image, due to the defocus δz, will be π δz λ(q2
x + q2

y), as expected from the Fresnel

propagator.55 The position of the focal plane can be chosen in the phase retrieval step, a fact

that was demonstrated computationally and experimentally by Spence et al.56 In that work

the focus of the retrieved image of an object of two screens separated by some depth could

be chosen by setting a tight support for the features in one screen or the other. As shown
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by Spence et al., once the phases of the diffraction intensities have been retrieved, images

can be generated at any position through focus, by Fresnel propagating the image wave-field

(equivalent to applying the appropriate quadratic phase term to the diffraction phases).

The defocus effects of a single view are illustrated in Fig. 6, where we show 2D images of

the wavefield at the pyramid object, reconstructed from a single-view diffraction pattern. In

this example, we use the diffractogram for the object rotated by φ = 24◦ from the head-on

(plan view) orientation. The image γM reconstructed by Shrinkwrap, from the single-view

diffraction pattern, is shown in Fig. 6 (a). No real-space reality nor positivity constraint

was applied and the reconstructed image is complex. For this object and view, the edges

of the object (its support) are at a range of heights along the beam axis. In this case the

end-point support that the Shrinkwrap algorithm arrived at was tightest around the balls

halfway along the arms of the pyramid, and consequently this is the plane of best focus.

This focal plane gives the greatest overall image contrast, which explains why Shrinkwrap

converges to it. The complex image can be numerically propagated, by convolution with

the Fresnel propagator, by any arbitrary amount δz. We generated a series of numerically

refocused images, where δz varies between ±2.5µm, in 50 nm steps. As the refocus distance is

increased the best focus moves along the pyramid arms to their extremities. The difference

in focus of balls near the vertex and arm extremities can be seen in Fig. 6 (d) and (e)

which show x-δz line-outs of the real part of the complex image. The difference between

the best focus for these two cases is 1.2µm, which agrees with the 3D image (Sec. 4.A) and

the known geometry of the pyramid. It should be noted that this computational focusing

does not constitute 3D imaging, but is simply the propagation of a 2D coherent field. The

coherent transfer function (CTF) for the 2D image formed from a single-view diffraction
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pattern is confined to the Ewald surface, and in this situation with coherent illumination

the integrated intensity of this 2D image does not change with defocus (a consequence of

Parseval’s theorem and the invariance of the diffraction intensities with defocus). That is, it

is unlikely that numerical defocusing of a complicated object could give results that could

be as easily interpreted as for the pyramid-membrane test object used here. This situation

is unlike partially-coherent imaging in a microscope, where out-of-focus objects of compact

support contribute less power to the image and some optical sectioning can be carried out.16

Another consequence of the “defocus artifact” of 2D images, is that the 2D image of a

thick real object is complex, which means that a real-space positivity constraint cannot be

applied during the phase retrieval process. A positivity constraint, when valid, is known

to be very effective in deriving the diffraction phases, and important in direct methods in

crystallography and a strong constraint in diffraction imaging. Here, a real object is one in

which the object’s 3D complex transmission function o(u) is real, to a multiplicative complex

constant. Propagation of the out-of-focus parts of the object to the selected image plane will

give rise to a large variation in the complex values of image, as demonstrated in Fig. 7. Here

we show the complex amplitudes of images recovered from calculated diffraction patterns of

simulated objects. The simulated objects consisted of gold balls of equal size, distributed in a

similar way to the pyramid test object. In the first case (Fig. 7 a) the z coordinate of all ball

centers was set to zero to construct a quasi-2D object. Ignoring the arbitrary phase shift, the

reconstructed image is real although not strictly positive (the negativity of the image is due

to the truncation of the diffraction pattern). The calculated image values are complex for

the 3D object (Fig. 7 b) and there is a rough correlation between absolute value and phase of

the values. This non-reality can also be explained by the curvature of the Ewald sphere. The
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3D diffraction magnitudes of a real object are centrosymmetric, whereas the Ewald sphere

does not cut through both O(u) and O(−u).57 In general, a positivity constraint will only

be applicable for the full 3D image, 2D projections (discussed in Sec. 4.C), 2D images of thin

objects, and 2D images of objects with a mirror-plane symmetry.

If the object can be considered two-dimensional and positive, a positivity constraint will

have the effect of focusing the image. Usually the support constraint is loose, and even if the

shape of the object is well known or determined from the Shrinkwrap algorithm, for example,

there may still be room for a defocused image to be contained within the support. The degree

of defocus allowed by the support depends on how tight it is. The defocused image of a real

2D object with sharp edges or high frequencies will be real but include negative values. The

focused image will be that which is most positive, and hence a positivity constraint will

select that image. This is true not only for defocus, but for any other low-order aberration

(astigmatism, coma, etc.). That is, without the positivity constraint, there are slowly-varying

phase modes that cannot be determined, and the number of these modes depends on how

tight the support is. The same argument applies for 3D reconstruction of positive 3D objects.

In this case, the phase errors will be low-order 3D modes, which cannot be thought of as

focus or other aberrations of an optical system, but are simply unconstrained phase errors

in Fourier space.

4.C. Two-Dimensional Projection Images

Defocus in a 2D image formed from a single diffraction pattern is a consequence of the

Ewald sphere CTF, as described above. The focal plane of the image may be varied by

multiplying the Fourier transform of the 2D image by a quadratic phase term. In a full
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three-dimensional reconstruction, there is no concept of defocus. A shift of the object by δz

along the beam axis causes the phase ramp −2π δz uz across the 3D transform. This causes a

shift of the image, no different to shifts δx or δy in the other dimensions. There is no optical

axis in the reconstructed 3D image, so there is no defocus. Similarly, there is no defocus

in a 2D projection image formed by integrating the 3D image along a specific direction.

A 2D projection may be recovered from the diffraction intensities without having to first

undergo a full 3D reconstruction, and we find this is a useful step to quickly examine our 3D

datasets. By the Fourier projection theorem, the projection image is formed from a central

section in reciprocal space, e.g. the plane uz = 0 gives the projection along the z axis. We

have performed phase retrieval on central sections of the pyramid diffraction data, by first

extracting the appropriate diffraction intensities from all views. One example of a central

section is shown in Fig. 4 (b), which was generated by linear interpolation of measured

intensities at ui,j,φ onto the uz = 0 plane. The projection images that we reconstruct from

experimental data are superior to the reconstruction on a single Ewald sphere. One example

is shown in Figs. 8 (a) and (b), which can be compared with Fig. 6. In the projection images,

balls at the apex of the pyramid are similar to the balls at the base, whereas in the single

view image, the balls at the apex appear out of focus. The image of Figs. 8 (a) and (b)

was obtained using the Shrinkwrap algorithm (parameters given in Sec. 2.C), after first

regularizing by filtering the diffraction intensities according to Eqn. (19). The missing data

in the arc-shaped regions seen in Fig. 4 (b) were allowed to float in the reconstruction of the

complex image, according to Eqn. (12).

Figures 8 (a) and (b) depict the real part of the complex image, and the distribution

of complex values of the reconstructed image is given in Fig. 7 (c). As compared to the
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distribution of complex values of a reconstructed image from a single view diffraction pattern,

given in Fig. 7 (d), the values of the projection image are clustered closer to the real axis. This

is as expected since there are no defocus artifacts, and the object consists mostly of a single

material (gold) as was simulated in Figs. 7 (a) and (b). Thus, we should be able to apply the

reality and positivity constraints of Eqn. (14) to the projection image, to further improve it

and allow this extra information to help reconstruct the spatial frequency amplitudes and

phases that are missing behind the beamstop. This was the case for Figs. 2 (b) and 8 (c),

which is the real-positive constrained reconstruction from the same central section as for

Fig. 8 (a). In this case the diffraction data were not filtered. This reconstruction was carried

out using the same support mask derived by Shrinkwrap and used for the reconstruction of

the complex image. Since they were constrained, the complex amplitudes of the image were

distributed along the real axis, with some deviation from real for smaller amplitudes that

could be attributed to noise and scattering material other than gold (e.g. the silicon nitride

pyramid).

5. Image Analysis

Both the reconstructed X-ray 2D projection image described in Sec. 4.C and the 3D image

described in Sec. 4.A clearly show good agreement with the SEM image of Fig. 2 (a). When

we overlay a semi-transparent version of the projection image of Fig. 2 (b) on the SEM

image (a) we see that the locations of all balls visible in the SEM match with the balls

visible in the X-ray image, to within a pixel. In the X-ray volume image however we can

locate more balls than visible in the SEM image. The slice image of Fig. 2 (d) reveals that

the gold balls of the object are not entirely a single layer, but the arms of the structure
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are several balls deep in places. The balls were deposited on the inside surface of the silicon

nitride pyramid, and it is clearly seen that these balls are indeed flush with the intersecting

edges of the pyramid. The regions where the balls are layered give rise to a higher projected

image intensity which shows up as brighter regions in the projection image of Fig. 2 (b). We

confirm that the 3D pyramid geometry determined from the reconstructed volume image

is consistent with the manufacture of the pyramid. We measure an included angle between

opposite faces of the pyramid of 70± 1◦, compared with the included angle of 70.5◦ between

the 111 and 11̄1 crystal planes of silicon. The 3D image does not appear to contain the

pyramid-shaped silicon nitride membrane itself, which in principle should be reconstructed

as a predominantly phase object (with a phase of 1.3◦ per voxel). However, due to the missing

data in the beam stop we only observe the high-frequency edges of the pyramid, which are

faintly visible in projection images.

The volume images display good spatial resolution in the x, y and z dimensions. Quantify-

ing resolution is not straight forward since we do not have an exactly known 3D standard—

the SEM only shows the surface of the object, for example, and this method cannot reveal

the 3D structure. We estimate the resolution of our images by examining both their Fourier

and real-space representations. In Fourier space we base measures of resolution on the signal

to noise of measured diffraction intensities and the consistency of recovered phases, whereas

in real space we fit models to 3D images of isolated balls.

5.A. Reconstruction Consistency and Resolution

The performance of our imaging technique could be quantified in Fourier space, in principle,

by measuring the CTF. For the numerical reconstruction technique used here this CTF
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would encapsulate resolution limits due to signal-to-noise, data alignment and regions of

missing data, as well as algorithm stability and uniqueness. The direct computation of the

CTF would require computing the ratio of the image Fourier amplitudes to the Fourier

amplitudes of the actual object, which again requires an accurate quantitative model of the

actual object structure at high resolution. Without such a model we can base an estimate

of the upper limit of the coherent transfer frequency cut-off on the signal to noise of the

measured diffraction data plotted in Fig. 9. The largest spatial frequency used in the the

interpolated 3D diffraction dataset (recorded near the corner of the CCD) is at umax =

√
2N ∆q = 0.068 nm−1. At this resolution shell we recorded an average of < 1 photon per

pixel, and obtained a SNR of 1 photon per pixel at u = 0.062 nm−1. (Since the noise level

of our camera is considerably less than 1 photon, we assume the noise in our diffraction

patterns determined by photon shot noise.) If we assume hypothetically that the diffraction

phases are known then the image can be fully represented, without loss of information,

with a pixel sampling of ∆q = 1/D, where D is the width of the object, corresponding to

s = 1, and so we could rebin our oversampled data into larger pixels with a correspondingly

higher photon count. Summing in this way over pixels (referred to as pixel binning) is not

the same as resampling however, and such an operation would multiply the autocorrelation

image with the Fourier transform of the summed pixel shape, which will be a function

that falls from unity at the image center to 2/π at the edge of the autocorrelation image.

The effect could be deconvolved from the pattern, but we avoid that by binning to a pixel

sampling of ∆q = 1/(sD), with s = 2, which is the critical sampling interval of the object’s

autocorrelation function. The measured data were collected at s = 4.6, so resampling to

s = 2 gives an average of 1 photon per pixel (SNR = 1) at u = 0.066 nm−1. If we take
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a measure of resolution as the frequency at which the SNR of the rebinned data is unity,

then we find that the average 3D cutoff is 0.066 nm−1 or a smallest resolvable half period of

7.5 nm. This is very close to the smallest half period of 7.3 nm limited by the detector NA.

The phase retrieval process recovers the diffraction phases with a limited accuracy, due

to factors including SNR of the diffraction amplitudes, missing data, the inconsistency of

constraints, and systematic errors in the data (such as errors in interpolation). These errors in

phase reduce the resolution of the synthesized image. With a complex image a loose support

constraint will lead to unconstrained low-order aberrations, for example, as was discussed in

Sec. 4.B. In our case of reconstructing complex 2D images, with low frequencies missing due

to the beamstop, we have observed that phase retrieval from independent random starts may

differ by a phase vortex (right or left handed), centered at the zero spatial frequency. This too

has the effect of reducing the image resolution. One way to quantify the effect of these phase

variations is to determine the correlation between phases retrieved from independent random

starts of the phase-retrieval algorithm. For example, we could compute the differential phase

residual of these two solutions in the same way that independent images are compared in

cryo-electron microscopy [58, Chap. 3, Sec. B]. Since we have the ability to compute an

unlimited number of reconstructions from independent random starts, a more appropriate

choice is to determine the variation in retrieved phases as a function of resolution as suggested

by V. Elser.36 More specifically, the average of the independent complex reconstructions is

computed, and the square of the Fourier amplitudes of this average are compared with the

measured diffraction intensities. Where the phases are consistently retrieved to the same

value, the squared modulus of the average will be equal to the constrained modulus, and the

ratio will be unity. Where the phases are random and completely uncorrelated, the average
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will approach zero. Thus, the ratio is effectively a transfer function for the phase retrieval

process, and the average image is the best estimate of the image: spatial frequencies are

weighted by the confidence with which their phases are known.36 It should be possible to

obtain even better estimates of the complex amplitudes by a more detailed analysis of the

distributions of retreived phases over independent trials and, for example, applying patching

and voting methods as described by Fienup and Wackerman.59

All 2D and 3D images displayed in this paper are averages of more than 300 independent

phase retrieval trials. That is, the best estimate of the image is given by

γM =
〈

γM eiφ0

〉

, (22)

where 〈 〉 denotes an average over independent reconstructions. Analogous to the modulus of

the coherent transfer function of a coherent imaging system, we define the Phase Retrieval

Transfer Function (PRTF) as

PRTF(u) =
|Fu {γM}|
√

I(u)
=

∣

∣

〈

ΓM(u) eiφ0

〉∣

∣

√

I(u)
, (23)

where ΓM is the diffraction amplitude with retrieved phases, the Fourier transform of

Eqn. (18). Plots of the PRTF, averaged over shells of constant u and where I(u) are non-

zero, are shown in Fig. 10 (a) for the 3D image of Fig. 5 and for the 2D projection image of

Fig. 8 (a).

When computing the average image γM , the arbitrary multiplicative phase constant φ0 of

each image must be adjusted to a common value so that the random variation of this constant

does not reduce the average, which would result in a low value of the transfer function. We

do this for the first reconstructed image γ
(0)
M by finding the constant phase that maximizes
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the real part of that image, which can be achieved by finding the value φ0 that maximizes60

α =
∑

k

<
{

γ
(0)
M (k) exp(iφ0)

}2

,

=
∑

k

{

2
∣

∣

∣γ
(0)
M (k)

∣

∣

∣

2

+ γ
(0)
M (k)2 exp(2iφ0) + (γ

(0)
M (k)∗)2 exp(−2iφ0)

}

/4,

(24)

for an image with with pixels (or voxels) indexed by integers k and complex values γM(k).

We maximize the square of the real part to allow for positive and negative real values. The

value α can be maximized by maximizing either the second or third terms of Eqn. (24), and

we do so by finding the phase φ of the complex value
∑

k γ
(0)
M (k)2, and setting φ0 = −φ/2.

The subsequent images γM are adjusted by finding the constant phase φ1 which minimizes

∑

k |γ
(0)
M (k) − γM(k)|2. This phase is that which maximizes

∑

k <{γ
(0)
M (k) γM(k) exp(iφ1)},

which is simply the phase of the complex value
∑

k γ
(0)
M (k)∗ γM(k).

In the case of 2D images we also improve the average by separating out the vortex modes

mentioned above. This was achieved using the voting method,59 simply by correlating each

phase retrieval solution with the previous solutions and separating the solutions into three

classes (which were found to differ by left and right-handed phase vortices) based on the

value of the correlation. We found that the class with the most frequent members (60% of

trials) gave rise to the best image, wherease the other two classes were equally frequent (20%

each) and gave rise to images for which the balls were larger, had bright edges and reduced

intensity at their centers. Based on the appearance of the balls we assumed that the most

frequent class was that which did not have a vortex mode. The effect of removing the vortex

modes from the average image is shown in Fig. 10 (a). As is seen in that figure the PRTF

is uniformly increased across all frequencies. This is due to the fact that the left and right

handed vortex modes sum together to give a variation of the modulus which varies as the
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cosine of the azimuthal angle in the diffraction pattern, and which averages to zero in the

average around this complete circle for each u.

The resolution cutoff of the phase retrieval process can be given by the spatial frequency

at which the PRTF extrapolates to zero. For all cases here, this frequency is greater than

the measurement cutoff of umax = 0.068 nm−1, or half-period resolution length of 7.4 nm. A

more conservative estimate of the resolution is given by the frequency at which the PRTF

reaches a value of 0.5. For the vortex-corrected 2D reconstruction this occurs just at umax,

but for the 3D image this corresponds to 0.048 nm−1, or a half-period resolution length of

10.4 nm. In this case the average resolution cutoff is worse than the 2D case because the 3D

PRTF is diminished along the uz direction where the diffraction data are missing (which

reduces the average over the u shell). This is illustrated in Fig. 10 (b), where we display the

3D PRTF as a surface for which it has a value of 0.5. The PRTF is not defined in the regions

of missing diffraction data, which are seen as the missing wedges in the surface. It is seen

that the resolution is approximately the same in all directions of u where intensities were

measured.

When applied to the average image γM , the modulus constraint error E2
M of Eqn. (17) is

equal to the intensity-weighted integral over u of |1 − PRTF(u)|2. That is, it gives a single

measure of how well diffraction intensities of the average image agree with the measurement.

This is generally higher than the metric E2
M applied to the iterate gn, which gives an estimate

for how well the algorithm fits the intensity data. The value of E2
M applied to the average

3D image is 0.368, and 0.059 for the average 2D projection image that was corrected for

vortex phase errors (0.312 without vortex correction). We expect that a similar correction

of low-order phase modes in the 3D image would lead to a similar improvement in the error
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metric, and the relatively high value of E2
M for the average 3D image is due to the overall

filtering due to the variation of these low-order phase modes.

We can also compute the agreement of the average image γM to the real-space support

constraint E2
S of Eqn. (16). We find a value of 0.228 when applied to the average 3D image

and 0.167 for the average 2D complex-valued projection image reconstructed from the central

section. Note however that in the 3D image the support S accounts for 0.10% of the image

voxels whereas S covers 4.1% of the pixels in the projection 2D images, and so the average

error per pixel outside the support is much less for the 3D that the 2D reconstruction. We find

with the addition of the real-space positivity constraint that E2
S of the average 2D projection

image decreases from 0.167 to 0.072. However, in this case the modulus constraint error E2
M

increases from 0.059 to 0.172.

5.B. Real-space resolution

The measures of resolution from the SNR and PRTF reveal the effects of noise, consistency of

the diffraction data, and how well the image obeys the imposed constraints. These measures

are contributors to the overall image resolution. A direct measure of a lower limit of resolution

can be obtained by examining the images of isolated and closely spaced gold balls. Line-outs

of the isolated ball located on the lower left arm of Fig. 5 (a) are shown in Fig. 11, for

all three orthogonal directions. The ball image has full widths at half maximum (FWHM)

of 30, 35, and 70 nm in the x, y, and z directions, respectively. Images of other isolated

balls in the object are very similar to that shown in Fig. 11. Assuming the balls are 50 nm

in diameter, we obtain a good fit to the images by modeling a coherent imaging system

with a coherent transfer function (CTF) that is unity within a cube of half-width 0.05 nm−1
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(centered at the zero frequency) and which is zero within a sector of 60◦ as rotated about the

y axis, and centered about the z axis. Line-outs of the modeled coherent images, computed

by convolving an isolated 50 nm sphere with the Fourier transform of the CTF (that is,

the point spread function, or PSF), are shown as dashed lines in Fig. 11. The FWHM of

the modeled coherent image are 36 nm, 40 nm and 64 nm in the x, y, and z directions,

respectively, in good agreement with the reconstructed image. We do not expect the model

to be an exact fit to the data, since the actual PSF is more complicated and depends on the

details of the phase retrieval, which is better characterized by the PRTF in Fig. 10. However,

the fits are reasonable and the widths of the modeled PSF are in good agreement with the

measures of resolution obtained from analysis of the diffraction intensities and recovered

phases. The modeled PSF, given by the Fourier transform of the CTF, has a half-width

of 10 nm × 10 nm × 40 nm. Here the half width is defined as the distance from the central

maximum of the PSF to the first zero. Since the imaging process is coherent, the image

width depends on the phase of the PSF, which has a different distribution for the x and y

directions. This explains the variation of image widths in the x and y directions, and why

the image FWHM in these directions are in fact smaller than the ball diameter. As expected,

the resolution in the z direction is much worse than in the x and y directions, due to the

missing sector of data that arises from recording diffraction over a limited range of angles.

6. Summary and Conclusions

We have presented 3D images reconstructed ab initio from coherent X-ray diffraction, which

exhibit high resolution in all three dimensions. These images are the highest resolution 3D

images of non-periodic objects where the resolution is comparable in all three dimensions.
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The work presented here marks an important advance in that we have fully demonstrated

the experimental methods to collect 3D coherent X-ray diffraction and the computational

tools to manage the data, and reconstruct 3D images of more than 109 voxels.

The coherent X-ray diffraction recorded from our 3D test object comprised of 140 views,

at 1◦ intervals, and extend to a maximum spatial frequency of 0.068 nm−1, or a smallest

reconstructible half-period of 7.4 nm. Although we cannot exactly quantify the resolution

of the image, which would require knowing the object’s 3D structure, we have determined

the consistency of the retrieved phases which gives us an estimate of an upper bound of

the CTF of the imaging process. Our analysis shows we can consistently retrieve phases

out to the maximum spatial frequency recorded. This consistency measure does not tell

us anything about systematic errors, such as interpolation of the data, errors in assigning

spatial frequency u to the intensities (imperfect knowledge of the beam center), and missing

data due to the beam stop or limited range of object orientations. However, we easily resolve

50 nm spheres that are touching each other, and from such image line-outs, and comparisons

of reconstructed X-ray images with the SEM image, we have confidence that our achieved

image resolution is close to our upper estimate.

We have found that our Shrinkwrap algorithm,6 which determines the object support ab

initio, is robust and works well even with missing Fourier-space data due to limited object

orientations or the beamstop. The phase retrieval process can be essentially characterized by

a 3D transfer function (the Phase Retrieval Transfer Function, or PRTF) which is influenced

by the noise of the measured diffraction intensities. While the algorithm lets the amplitudes

at the locations of missing data to also be recovered, these values are not consistently re-

constructed and are averaged to zero, leaving worse resolution in the depth (z) direction.

49



OSA
Published by

We expect that with a dataset collected over the full range of sample orientation angles we

would achieve equal resolution in all three dimensions. As it is, we obtained an estimate of

10 nm in x and y and 50 nm in z.

We have shown that high-NA X-ray coherent imaging of thick objects can only properly

be carried out in the context of three dimensions. Here we define high-NA imaging of thick

objects to be imaging under conditions that lead to a depth of focus less than the depth of the

object, in any of its orientations. Since the imaging is coherent, a 2D image of a thick object

in any one view will exhibit defocus artifacts which do not diminish in overall power with the

degree of defocus and which lead to difficulties in the interpretation of the image. In addition,

these artifacts cause the image of a real positive object, for example, to be complex, hence

hampering quantitative evaluation of the image. Two-dimensional images free of defocus

artifacts can be quickly generated from central sections extracted from the diffraction data.

Three-dimensional images are synthesized from the entire 3D diffraction dataset. The tools

are now in place to perform full 3D reconstructions of thick samples. Currently we have

reconstructed arrays with almost 2 × 109 elements. If the minimum oversampling of 3
√
2

is used in each dimension, then this would correspond to objects of width 9.5µm at a

pixel spacing of 10 nm, or a half-period resolution length of 7 nm along the diagonal. When

single-particle XFEL imaging at atomic resolution becomes feasible, then these demonstrated

computational capabilities could be used to reconstruct objects of 480 nm width at 0.7 nm

resolution, for example. This would correspond to a large virus, or a large protein complex

such as the ribosome.
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Szöke (LLNL), Gösta Huldt (U. Uppsala), and Eugene Ingerman (CBST). We gratefully

acknowledge Richard Crandall and the Advanced Computations Group (Apple Computer,

Inc.) for the development of the dist fft software. We acknowledge the support of the

Advanced Light Source staff. This work was performed in part under the auspices of the U.S.

Department of Energy by University of California, Lawrence Livermore National Laboratory

under Contract W-7405-Eng-48. The work of the Lawrence Berkeley National Laboratory

participants and the operation of the Advanced Light Source facility was supported by the

Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences

Division of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098. This

work has been supported by funding from the National Science Foundation. The Center

for Biophotonics, an NSF Science and Technology Center, is managed by the University

of California, Davis, under Cooperative Agreement No. PHY 0120999. This work was also

partly supported by Department Of Energy under Grant No. DEFG0202ER45996.

References

1. D. Sayre and H. N. Chapman, “X-ray microscopy,” Acta Cryst. A 51, 237–252 (1995).

2. D. Sayre, H. N. Chapman, and J. Miao, “On the Extendibility of X-ray Crystallography

to Noncrystals,” Acta Cryst. A 54, 232–239 (1998).

51



OSA
Published by

3. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray

crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature

400, 342–344 (1999).

4. I. K. Robinson, I. A. Vartanyants, G. J. Williams, M. A. Pfeifer, and J. A. Pitney,

“Reconstruction of the Shapes of Gold Nanocrystals Using Coherent X-Ray Diffraction,”

Phys. Rev. Lett. 87, 195505 (2001).

5. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants, and I. K. Robinson, “Three-Dimensional

Imaging of Microstructure in Au Nanocrystals,” Phys. Rev. Lett. 90, 175501 (2003).

6. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weier-

stall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,”

Phys. Rev. B 68, 140101 (2003).

7. S. Marchesini, H. N. Chapman, S. P. Hau-Riege, R. A. London, A. Szoke, H. He, M. R.

Howells, H. Padmore, R. Rosen, J. C. H. Spence, and U. Weierstall, “Coherent X-ray

diffractive imaging: applications and limitations,” Opt. Express 11, 2344–2353 (2003).

8. H. He, S. Marchesini, M. Howells, U. Weierstall, H. Chapman, S. Hau-Riege, A. Noy, and

J. C. H. Spence, “Inversion of x-ray diffuse scattering to images using prepared objects,”

Phys. Rev. B 67, 174114 (2003).

9. M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen,

J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, and J. C. H.

Spence, “An assessment of the resolution limitation due to radiation-damage in x-

ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. (2005). URL http:

//arxiv.org/pdf/physics/0502059.

52



OSA
Published by

10. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for

biomolecular imaging with femtosecond X-ray pulses,” Nature 406, 753–757 (2000).

11. J. Miao, K. O. Hodgson, and D. Sayre, “An approach to three-dimensional structures

of biomolecules by using single-molecule diffraction images,” Proc. Nat. Acad. Sci. 98,

6641–6645 (2001).

12. J. C. H. Spence and R. B. Doak, “Single Molecule Diffraction,” Phys. Rev. Lett. 92,

198102 (2004).

13. W. S. Haddad, I. McNulty, J. Trebes, E. Anderson, R. Levesque, and L. Yang, “Ultrahigh-

resolution x-ray tomography,” Science 266, 1213–1215 (1994).

14. D. Weiss, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Com-

puted tomography of cryogenic biological specimens based on x-ray microscopic images,”

Ultramicros. 84, 185–197 (2000).

15. C. A. Larabell and M. A. Le Gros, “X-ray Tomography Generates 3-D Reconstructions of

the Yeast, Saccharomyces cerevisiae, at 60-nm Resolution,” Mol. Biol. Cell 15, 957–962

(2004).

16. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127

(1985).

17. T. Beetz, M. Howells, C. Jacobsen, C. Kao, J. Kirz, E. Lima, T. Mentes, H. Miao,

C. Sanchez-Hanke, D. Sayre, and D. Shapiro, “Apparatus for X-ray diffraction mi-

croscopy and tomography of cryo specimens,” Nucl. Instrum. Meth. A 545, 459–468

(2005).

18. M. R. Howells, P. Charalambous, H. He, S.Marchesini, and J. C. H. Spence, “An Off-

53



OSA
Published by

Axis Zone-Plate Monochromator for High-Power Undulator Radiation,” in Proc. SPIE,

D. C. Mancini, ed., vol. 4783, pp. 65–73 (2002).

19. C. Giacovazzo, Direct Phasing in Crystallography, p. 468 (Oxford University Press, 1998).

20. R. Crandall, E. Jones, J. Klivington, and D. Kramer, “Gigaelement FFTs on Apple

G5 clusters,” Advanced Computation Group, Apple Computer (2004). URL http://

images.apple.com/acg/pdf/20040827 GigaFFT.pdf.

21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2002).

22. R. W. James, The Optical Principles of the Diffraction of X-Rays (Bell, London, 1962).

23. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from

holographic data,” Opt. Commun. 1, 153–156 (1969).

24. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological ap-

plications,” Q. Rev. Biophys 28, 33–130 (1995).

25. F. Natterer, “An error bound for the Born approximation,” Inverse Problems 20, 447–

452 (2004).

26. R. N. Bracewell, The Fourier Transform and its Applications, Second edition (McGraw-

Hill, 1986).

27. J. Miao, T. Ishikawa, E. H. Anderson, and K. O. Hodgson, “Phase retrieval of diffraction

patterns from noncrystalline samples using the oversampling method,” Phys. Rev. B

67, 174104 (2003).

28. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the

Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998).

29. J. W. Goodman, Introduction to Fourier Optics, Second Edition (McGraw-Hill, 1996).

54



OSA
Published by

30. J. C. H. Spence, U. Weierstall, and M. Howells, “Coherence and sampling requirements

for diffractive imaging,” Ultramicros. 101, 149–152 (2004).

31. R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional

structure from its projections and its applications to electron microscopy,” Proc. Roy.

Soc. Lond. 317, 319–340 (1970).

32. E. Salerno, “Superresolution Capabilities of the Gerchberg Method in the Band-pass

Case: An Eigenvalue Analysis,” Int. J. Imaging Syst. Technol. 90, 181–188 (1998).

33. Y. Nishino, J. Miao, and T. Ishikawa, “Image reconstruction of nanostructured nonpe-

riodic objects only from oversampled hard x-ray diffraction intensities,” Phys. Rev. B

68, 220101 (2003).

34. T. Sato, S. J. Norton, M. Linzer, O. Ikeda, and M. Hirama, “Tomographic image re-

construction from limited projections using iterative revisions in image and transform

spaces,” Appl. Opt. 20, 395–399 (1981).

35. M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value

analysis I. The case of coherent illumination,” Optica Acta 29(6), 727–746 (1982).

36. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima,

H. Miao, A. M. Neimann, and D. Sayre, “Biological imaging by soft x-ray diffraction

microscopy,” Proc. Nat. Acad. Sci. 102, 15,343–15,346 (2005).

37. A. Szoke, H. Szoke, and J. R. Somoza, “Holographic Methods in X-ray Crystallogra-

phy. V. Multiple Isomorphous Replacement, Multiple Anomalous Dispersion and Non-

crystallographic Symmetry,” Acta Cryst. A 53, 291–313 (1997).

38. S. P. Hau-Riege, H. Szoke, H. N. Chapman, A. Szoke, S. Marchesini, A. Noy, H. He,

55



OSA
Published by

M. Howells, U. Weierstall, and J. C. H. Spence, “SPEDEN: reconstructing single particles

from their diffraction patterns,” Acta Cryst. A 60, 294–305 (2004).

39. D. Potts, G. Steidl, and M. Tasche, “Fast Fourier transforms for nonequispaced data: a

tutorial,” in Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto

and P. Ferreira, eds., chap. 12, pp. 249–274 (Springer, 2001).

40. H. Choi and D. C. Munson, Jr., “Direct-Fourier reconstruction in tomography and syn-

thetic aperture radar,” Int. J. of Imaging Systems and Technology 9, 1–13 (1998).

41. F. Natterer, The mathematics of computerized tomography (SIAM, Philadelphia, 2001).

42. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ul-

trasonic Imag. 4, 336–350 (1982).

43. S. Pan and A. Kak, “A computational study of reconstruction algorithms for diffraction

tomography: Interpolation versus filtered-backpropagation,” IEEE Trans. Sig. Process.

31, 1262–1275 (1983).

44. H. He, S. Marchesini, M. Howells, U. Weierstall, G. Hembree, and J. C. H. Spence,

“Experimental lensless soft-X-ray imaging using iterative algorithms: phasing diffuse

scattering,” Acta Cryst. A 59, 143–152 (2003).

45. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier

transform using a support constraint,” J. Opt. Soc. Am. A 4 118–123 (1987).

46. J. R. Fienup, “Phase Retrieval and Support Estimation in X-Ray Diffrac-

tion,” in Coherence 2005: International Workshop on Phase Retrieval and Co-

herent Scattering (2005). URL http://www.esrf.fr/NewsAndEvents/Conferences/

Coherence2005/Proceedings/files/Talks/Fienup.pdf.

56



OSA
Published by

47. T. R. Crimmins, J. Fienup, and B. J.Thelen, “Improved bounds on object support from

autocorrelation support and application to phase retrieval,” J. Opt. Soc. Am. A 7, 3–13

(1990).

48. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769

(1982).

49. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–55 (2003).

50. D. R. Luke, “Relaxed Averaged Alternating Reflections for Diffraction Imaging,” Inverse

Problems 21, 37–50 (2005).

51. M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proceedings

of the IEEE 93, 216–231 (2005). Special issue on ”Program Generation, Optimization,

and Platform Adaptation”.

52. “The Message Passing Interface (MPI) standard,” URL http://www-unix.mcs.anl.

gov/mpi/.

53. A. J. Ladd, J. H. Kinney, D. L. Haupt, and S. A. Goldstein, “Finite-element modeling

of trabecular bone: comparison with mechanical testing and determination of tissue

modulus,” J. Orthop. Res. 16, 622–628 (1998).

54. “Movies of three-dimensional diffraction data and reconstruction of the pyramid test

object,” URL http://als.lbl.gov/esg beamlines/cxdi

55. J. M. Cowley, Diffraction Physics (North-Holland, 1981).

56. J. C. H. Spence, U. Weierstall, and M. Howells, “Phase recovery and lensless imaging by

iterative methods in optical, X-ray and electron diffraction,” Phil. Trans. R. Soc. Lond.

A 360, 875–895 (2002).

57



OSA
Published by

57. G. Huldt, private communication (2005).

58. J. Frank, Three-dimensional electron microscopy of macromolecular assemblies (Aca-

demic Press, 1996).

59. J. R. Fienup and C. Wackerman, “Phase-retrieval stagnation problems and solutions,”

J. Opt. Soc. Am. A 3, 1897–1907 (1986).

60. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36, 8352–

8357 (1997).

58



OSA
Published by

Tables

Array size Single Precision Double precision

2563 336MB 592MB

5123 2.6GB 4.6GB

10243 21GB 37GB

20483 168GB 296GB

Table 1. Minimum memory footprint required for iterative 3D phase retrieval

for various array sizes. The arrays required are the input diffraction data (float-

ing point), the current and previous iterates (complex single or double precision

floating-point data) and the support constraint (byte data).
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Array size Time per 3D Time per 3D

Fourier transform reconstruction

2563 73ms 10min

5123 850ms 1.5 hr

10243 7.9 s 14 hr

Table 2. Computing times using a cluster-based Fourier transform and recon-

struction code on 16 G5 dual-processor Xserve compute nodes. Fourier trans-

form timings are wall time per individual FFT. Reconstruction timings are

for a complete 3D reconstruction consisting of 2000 iterations of HIO phase

retrieval complete with two FFTs per iteration plus other operations required

to calculate the reconstruction.
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List of Figure Captions

Fig. 1: Scattering geometry for coherent X-ray diffraction imaging. The sample is rotated

about the y axis by an angle φ.

Fig. 2: (Color online) (a) SEM image of the pyramid test object, consisting of 50-nm

diameter gold spheres lining the inside of a pyramid-shaped indentation in a 100-nm thick

silicon nitride membrane. The membrane extends over a window of size 50µm × 1.7mm,

the pyramid base width is 2.5µm, and height is 1.8µm. (b) An iso-surface rendering of the

reconstructed 3D image. (c) Extremely large depth of field X-ray projection image from a

central section of the 3D diffraction dataset, reconstructed using the Shrinkwrap algorithm.

(d) A maximum-value projection of the 3D reconstructed image (left) with a vertical white

line indicating the location of a tomographic slice (right). The scale-bar length is 1µm and

applies to all images.

Fig. 3: (a) The diffraction pattern for the φ = 0◦ orientation of the pyramid. (b) Autocor-

relation image i(x), formed by Fourier transforming the diffraction intensity pattern of (a)

after filtering, displayed with a linear greyscale (white highest intensity). Scale bar is 1µm.

(c) Autocorrelation spectrogram of the same single-view diffraction pattern of the pyramid,

displayed with a logarithmic greyscale. The central and rightmost images of the bottom row

of (c) are redispayed in (d) and (e), respectively.

Fig. 4: (Color online) (a) A rendering of the entire 3D diffraction dataset. (b) A central slice
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of the dataset in the a plane rotated by −24◦ about the y axis from the ux-uy plane. (c) A

central slice of the dataset in the ux-uz plane. All patterns are displayed on a logarithmic

greyscale (white highest intensity). The half width of each pattern is ux,max = 0.048 nm−1.

Fig. 5: Maximum value projections along three orthogonal directions of the reconstructed

3D image. Projections were performed along (a) z, (b) x, and (c) y directions. (d) An

enlarged region of (a), for comparison with Fig. 8. The 3D image was reconstructed using

reality and positivity constraints. The scalebars are 500 nm.

Fig. 6: Real part of the image reconstructed from a single view diffraction pattern (a), and

real part of the image formed by numerically propagating (a) by −0.5µm (b) and +0.7µm

(c). Line-outs from the image near the pyramid center (d) and arm extremity (e) for a range

of propagation from -2.5µm to +2.5µm. The locations of these line-outs are indicated by

arrows in (a). The difference of the plane of best focus for these two image locations is

apparent. Scale bars are 500 nm.

Fig. 7: Distributions of the real-space complex amplitudes γM , in the Argand plane, of

simulated single-view coherent images for a 2D (a) and 3D (b) object consisting of 50 nm

diameter gold balls, for an X-ray wavelength of 1.6 nm. Distributions of complex amplitudes

of images reconstructed from experimental data, for (c) the 2D projection image shown in

Fig. 8, (d) for the single-view 2D image of Fig. 6, and (e) the full 3D image. Cases (c) and

(d) were reconstructed using PS, and (e) using PS+.
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Fig. 8: Extremely large depth of focus projection images, for the object orientation

φ = 0◦. (a) Reconstruction from a 2D central section interpolated from the 3D diffraction

dataset. The reconstruction was performed without a positivity constraint, E2
S = 0.167.

(b) Enlargement of the lower right arm of (a). (c) [and also Fig. 2 (c)] Reconstruction

from the 2D central section, using a positivity constraint, E2
S = 0.072. (d) Projected image

formed by integrating the full 3D reconstructed image, E2
S = 0.113. The scalebars are 500 nm.

Fig. 9: 3D diffraction intensities I(u), averaged over shells of constant u, in units of average

photon count per CCD pixel. The average over constant u of the 3D signal to noise ratio

(SNR) of the measured intensities is shown with a dashed line.

Fig. 10: (Color online) (a) The phase retrieval transfer function, averaged over shells of

constant u, for the real-positive 3D projection image (solid line) and averaged over circles

of constant u for the complex 2D image (dashed lines). The dashed line with lower values

is for the 2D projection image without correction of vortex phase modes. (b) An iso-surface

rendering of the 3D PRTF, at a threshold level of 0.5. The axis tick-marks indicate 0.05 nm−1.

Fig. 11: Line-outs of the real part of the reconstructed complex amplitude 3D image, for

three orthogonal directions (a) x, (b) y, and (c) z, through the isolated single ball at the

pyramid apex. Coordinates are relative to the center of the 3D image array. Dashed lines

show lineouts from a simulated 3D coherent image with a cube CTF with a 60◦ missing

sector.
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Fig. 1. Scattering geometry for coherent X-ray diffraction imaging. The sample

is rotated about the y axis by an angle φ.
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Fig. 2. (Color online) (a) SEM image of the pyramid test object, consisting of

50-nm diameter gold spheres lining the inside of a pyramid-shaped indentation

in a 100-nm thick silicon nitride membrane. The membrane extends over a

window of size 50µm× 1.7mm, the pyramid base width is 2.5µm, and height

is 1.8µm. (b) An iso-surface rendering of the reconstructed 3D image. (c)

Extremely large depth of field X-ray projection image from a central section

of the 3D diffraction dataset, reconstructed using the Shrinkwrap algorithm.

(d) A maximum-value projection of the 3D reconstructed image (left) with a

vertical white line indicating the location of a tomographic slice (right). The

scale-bar length is 1µm and applies to all images.
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a b

c d

e

Fig. 3. (a) The diffraction pattern for the φ = 0◦ orientation of the pyramid.

(b) Autocorrelation image i(x), formed by Fourier transforming the diffrac-

tion intensity pattern of (a) after filtering, displayed with a linear greyscale

(white highest intensity). Scale bar is 1µm. (c) Autocorrelation spectrogram

of the same single-view diffraction pattern of the pyramid, displayed with a

logarithmic greyscale. The central and rightmost images of the bottom row of

(c) are redispayed in (d) and (e), respectively.
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Fig. 4. (Color online) (a) A rendering of the entire 3D diffraction dataset. (b)

A central slice of the dataset in the a plane rotated by −24◦ about the y axis

from the ux-uy plane. (c) A central slice of the dataset in the ux-uz plane.

All patterns are displayed on a logarithmic greyscale (white highest intensity).

The half width of each pattern is ux,max = 0.048 nm−1.
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Fig. 5. Maximum value projections along three orthogonal directions of the

reconstructed 3D image. Projections were performed along (a) z, (b) x, and

(c) y directions. (d) An enlarged region of (a), for comparison with Fig. 8.

The 3D image was reconstructed using reality and positivity constraints. The

scalebars are 500 nm.
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Fig. 6. Real part of the image reconstructed from a single view diffraction

pattern (a), and real part of the image formed by numerically propagating (a)

by −0.5µm (b) and +0.7µm (c). Line-outs from the image near the pyramid

center (d) and arm extremity (e) for a range of propagation from -2.5µm to

+2.5µm. The locations of these line-outs are indicated by arrows in (a). The

difference of the plane of best focus for these two image locations is apparent.

Scale bars are 500 nm.
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Fig. 7. Distributions of the real-space complex amplitudes γM , in the Argand

plane, of simulated single-view coherent images for a 2D (a) and 3D (b) object

consisting of 50 nm diameter gold balls, for an X-ray wavelength of 1.6 nm. Dis-

tributions of complex amplitudes of images reconstructed from experimental

data, for (c) the 2D projection image shown in Fig. 8, (d) for the single-view 2D

image of Fig. 6, and (e) the full 3D image. Cases (c) and (d) were reconstructed

using PS, and (e) using PS+.
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a b

c d

Fig. 8. Extremely large depth of focus projection images, for the object ori-

entation φ = 0◦. (a) Reconstruction from a 2D central section interpolated

from the 3D diffraction dataset. The reconstruction was performed without a

positivity constraint, E2
S = 0.167. (b) Enlargement of the lower right arm of

(a). (c) [and also Fig. 2 (c)] Reconstruction from the 2D central section, using

a positivity constraint, E2
S = 0.072. (d) Projected image formed by integrating

the full 3D reconstructed image, E2
S = 0.113. The scalebars are 500 nm.
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Fig. 9. 3D diffraction intensities I(u), averaged over shells of constant u, in

units of average photon count per CCD pixel. The average over constant u of

the 3D signal to noise ratio (SNR) of the measured intensities is shown with

a dashed line.
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Fig. 10. (Color online) (a) The phase retrieval transfer function, averaged over

shells of constant u, for the real-positive 3D projection image (solid line) and

averaged over circles of constant u for the complex 2D image (dashed lines).

The dashed line with lower values is for the 2D projection image without

correction of vortex phase modes. (b) An iso-surface rendering of the 3D PRTF,

at a threshold level of 0.5. The axis tick-marks indicate 0.05 nm−1.
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Fig. 11. Line-outs of the real part of the reconstructed complex amplitude

3D image, for three orthogonal directions (a) x, (b) y, and (c) z, through

the isolated single ball at the pyramid apex. Coordinates are relative to the

center of the 3D image array. Dashed lines show lineouts from a simulated 3D

coherent image with a cube CTF with a 60◦ missing sector.
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